

UCF **Calc II**

– Series Tests

Kiva M.

The following 10 series tests are covered.

<input type="checkbox"/> Geometric	<input type="checkbox"/> Comparison
<input type="checkbox"/> Telescoping	<input type="checkbox"/> Limit
<input type="checkbox"/> P-Series	<input type="checkbox"/> Alternating
<input type="checkbox"/> Divergence	<input type="checkbox"/> Ratio
<input type="checkbox"/> Integral	<input type="checkbox"/> Root

Go to The Purple Dance In Candy Land And Run Ragged.

1 Tests

Test	Requirements	Action	Conclusion
Geometric-Series	$\sum_{n=0}^{\infty} ar^n$	Find r	$ r < 1 \therefore \text{converges}, r \geq 1 \therefore \text{diverges}$
Telescoping	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	Expand & find cancel pattern	Cancel & sum
P-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Find p	$p > 1 \text{ converge}, 0 < p \leq 1 \text{ diverge}$
Divergence	$\sum_{n=1}^{\infty} a_n$	Find $\lim_{n \rightarrow \infty} a_n$	$\text{if } \lim \neq 0 \text{ or DNE} \therefore \text{diverges}$
Integral	$\sum_{n=1}^{\infty} a_n$	Find $\int a_n, a_n'$	<i>iff is continuous, decreasing, and positive</i> $\sum_{n=1}^{\infty} a_n \text{ & } \int_N^{\infty} f(x)dx, \text{ both } c \text{ or } d$
Comparison	$\sum a_n \text{ & } \sum b_n, \{a_n \leq b_n\} \geq 0$	Find suiting b_n	$\sum b_n \text{ convergent} \therefore \sum a_n \text{ convergent}$ $\sum a_n \text{ divergent} \therefore \sum b_n \text{ divergent}$
Limit Comparison	$\sum a_n \text{ & } \sum b_n, \{a_n, b_n\} \geq 0$	$\lim_{n \rightarrow \infty} \frac{a_n}{b_n}$	$\lim = L \neq 0 \text{ both } c \text{ & } d, = 0 \text{ both } c, = \infty \text{ both } d$
Alternating-Series	$\sum_{n=1}^{\infty} (-1)^n b_n$	Find $\lim_{n \rightarrow \infty} b_n, b_n'$	$\text{if } \lim_{n \rightarrow \infty} = 0 \text{ and } b_n' < 0 \therefore \text{converges}$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\rho = \lim_{n \rightarrow \infty} \left \frac{a_{n+1}}{a_n} \right $	<i>if $0 \leq \rho < 1 \therefore \text{converges absolutely}$</i> $\rho > 1 \text{ or } \rho = \infty \therefore \text{diverges}$ $\rho = 1 \therefore \text{no info}$
Root	$\sum_{n=1}^{\infty} a_n$	$\rho = \lim_{n \rightarrow \infty} \sqrt[n]{ a_n }$	