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Calc III

– EXAM 1 NOTES

The following topics are covered:

□ Dot Product & Basic Properties

□ Angle Between Vectors

□ Scaler & Vector Projections

□ Cross Product & Properties

□ Area of a Parallelogram

□ Equation of a Line

□ Intersection of Planes

□ Equation of a Plane

□ Parallel, Skew, & Intersecting

□ Limits of Vector Functions

□ Calculus of Vector Functions

□ Arc Length

□ Curvature

□ TNB-Frames

□ Osculating Plane

□ Limits approaching via Axes

□ Partial Derivatives
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EXAM 1 NOTES

Dot Product formula: a⃗ · b⃗ = axbx + ayny + azbz

Properties of Dot Product:

• if a⃗ · b⃗ = 0, then a⃗ is perpendicular to b⃗

• a⃗ · a⃗ = ||⃗a||2

• a⃗ · b⃗ = b⃗ · a⃗

• a⃗ · (⃗b+ c⃗) = a⃗ · b⃗+ a⃗ · c⃗

• ka⃗ · b⃗ = k(⃗a · b⃗)

• 0⃗ · a⃗ = 0

Angle between Vectors: a⃗ · b⃗ = ||⃗a||||⃗b|| cos θ

Scaler Projection: The magnitude of the b⃗a component.

comp a⃗ b⃗ =
a⃗·⃗b
||⃗a||

x

y

b

ascaler

Vector Projection: The vector parallel to a⃗ with the magnitude of the b⃗a component.

proj a⃗ b⃗ =
a⃗·⃗b
||⃗a|| ∗

a⃗
||⃗a||

x

y

b

avector

Page 2 of 5



EXAM 1 NOTES

Cross Product formula:

• a⃗× b⃗ = ||⃗a||||⃗b|| sin θ n̂

• a⃗× b⃗ =

i j k
a⃗x a⃗y a⃗z
b⃗x b⃗y b⃗z

= i
[
a⃗y b⃗z − a⃗z b⃗y

]
− j

[
a⃗x⃗bz − a⃗z b⃗x

]
+ k

[
a⃗x⃗by − a⃗y b⃗x

]
Properties of Cross Product:

• if a⃗× b⃗ = 0, then a⃗ is parallel to b⃗

• a⃗× b⃗ = −(⃗b× a⃗)

• a⃗× (⃗b+ c⃗) = (⃗a× b⃗) + (⃗a× c⃗)

• k(⃗a× b⃗) = b⃗× (ka⃗) = a⃗× (k⃗b)

• a⃗× 0⃗ = 0⃗× a⃗ = 0⃗

• a⃗× a⃗ = 0

Area of a Parallelogram = ||⃗a× b⃗||

Equation of a Line:

• r⃗ = (x0 + at)⃗i+ (y0 + bt)⃗j + (z0 + ct)k⃗

• r⃗ = ⟨x0 + at, y0 + bt, z0 + ct⟩

• Parametric Form
{
x = x0 + at y = y0 + bt z = z0 + ct

}
• Symmetric Form x−x0

a
= y−y0

b
= z−z0

c

Intersection of Planes: Take the cross product of the normal vectors and then find the common
point via substitution, plug vals into plane equation.

Equation of a Plane: a(x− x0) + b(y − yz) + c(z − z0) = 0, n̂ = ⟨a, b, c⟩
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EXAM 1 NOTES

Parallel, Skew, & Intersecting:

• if a⃗× b⃗ = 0, parallel

• Set equal & solve if a common point exists, intersecting

• Otherwise Skew

Limits of Vector Functions: Approach from x, y, y=x, etc... until the limit = 2 different values,
therefore DNE.
Hint: Substitute denominator into 1 term & use l’hopital’s.

Calculus of Vector Functions:

• d
dt
{u⃗+ v⃗} = u⃗ ′ + v⃗ ′

• d
dt
{ku⃗} = ku⃗ ′

• d
dt
{f(t)u⃗} = f(t)u⃗ ′ + u⃗f ′(t)

• d
dt
{u⃗ · v⃗} = u⃗ · v⃗ ′ + v⃗ · u⃗ ′

• d
dt
{u⃗× v⃗} = u⃗× v⃗ ′ + u⃗ ′ × v⃗

• d
dt
{u⃗(f(t))} = u⃗ ′(f(t)) ∗ f ′(t)

Arc Length: L =
∫ b

a

√
f ′(t)2 + g′(t)2 + h′(t)2dt

Curvature:

• κ(t) = ||T⃗ ′(t)||
||r⃗ ′(t)||

• κ(t) = ||r⃗ ′(t)×r⃗ ′′(t)||
||r⃗ ′(t)||3

• κ(x) = ||f ′′(x)||

||1+f ′(x)2||
3
2

TNB-Frames:

Unit Tangent Vector T⃗ (t) = r⃗ ′(t)
||r⃗ ′(t)||

Unit Normal Vector N⃗(t) = T⃗ ′(t)

||T⃗ ′(t)||

Binormal Vector B⃗(t) = T⃗ (t)× N⃗(t)
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EXAM 1 NOTES

Osculating Plane: B⃗x(x− x0) + B⃗y(y − y0) + B⃗z(z − z0) = 0

Limits approaching via Axes: lim(x,y)→(0,0)
f(x,y)
g(x,y)

Approach from x = 0 & y = 0, then approach from the x or y ratio such that g(x, y) becomes a
single term, and both f(x, y) & g(x, y) use the same singular variable x or y. Now use l’hopital’s,
if any of the results conflict the limit does not exist. You are actively trying to prove the limit does
not exist.

Partial Derivatives:

First Order Partials: fx = d
dx

{f(x, y)} , fy = d
dy

{f(x, y)}

Second Order Partials: fxx = d
dx2 {f(x, y)} , fyy = d

dy2
{f(x, y)} , fxy = d

dy

{
d
dx

{f(x)}
}
, fyx =

d
dx

{
d
dy

{f(x)}
}

Clairaut’s Theorem: if fxy & fyx are continuous, fxy = fyx
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UCF

Calc III

– EXAM 2 NOTES

The following topics are covered:

□ 4.4 - Tangent Planes & Linear Ap-
proximations

□ 4.5 - Chain Rule

□ 4.6 - Direction Derivatives & the Gra-
dient Vector

□ 4.7 - Maxima/Minima

□ 5.1 - Double Integrals over Rectangu-
lar Regions

□ 5.2 - Double Integrals over General
Regions

□ 5.3 - Double Integrals in Polar Coor-
dinates

□ 2.6 - Quadric Surfaces
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EXAM 2 NOTES

Tangent Plane: L(x, y) = f(x0, y0) + fx(x− x0) + fy(y − y0)

Linear Approximation: Input your point into the Tangent Plane formula to find the linear
approximation.

Chain Rule: dz
dt

= dz
dx

· dx
dt

+ dz
dy

· dy
dt

Don’t forget the tree strategy for finding the derivative order.
ex. w = f(x, y, z), x = g(u, v), y = h(u, v), z = j(u, v)

w

x

u v

y

u v

z

u v

Gradient Vector: ∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩

Directional Derivative:

• Du⃗f(x, y) = fx(x, y)a+ fy(x, y)b, u⃗ = ⟨a, b⟩

• Du⃗f(x, y) = ⟨fx(x, y), fy(x, y)⟩ · u⃗

• Du⃗f(x, y) = ∇f(x, y) · u⃗

u⃗ is a unit vector that represents the direction that the directional derivative takes.

Finding the max & min:
The maximum value of the directional derivative represents the steepest path to the top of the
surface. In the direct opposite direction lies the minimum value, which represents the steepest path
downward.
max = ||∇f(x, y)||û, min = −||∇f(x, y)||û

Maxima & Minima of a Domain:

D

x

y

L1

L3

L2L4

D

x

y

D
L3

L2

L1

x

y

Take the partial derivatives fx(x, y) & fy(x, y), and set them equal to zero. Then substitute in the
equation for each of the sides (ex.L1, L2, L3...), and once again set the partials equal to zero. This
will find the critical points within the domain D.
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EXAM 2 NOTES

Test each of these points along with the corners in the original equation to find the value of z,
and with the below theorem to discover the type of extrema. Giving the local max/min, as well as
absolute max/min, and saddle points.

D = fxx(x, y) · fyy(x, y)− [fxy(x, y)]
2

• if D > 0 & fxx(x0, y0) > 0, local min at (x0, y0)

• if D > 0 & fxx(x0, y0) < 0, local max at (x0, y0)

• if D < 0, saddle point at (x0, y0)

• if D = 0, inconclusive

Double Integrals over Rectangular Regions:

R

x

y

d

c
a b

The double integral aka the volume below the surface f(x, y) in the region R is equal to:

•
∫∫

R
f(x, y)dA =

∫ b

a

[∫ d

c
f(x, y)dy

]
dx

•
∫∫

R
f(x, y)dA =

∫ d

c

[∫ b

a
f(x, y)dx

]
dy

• In select cases:
∫∫

R
f(x, y)dA =

∫
f(x)dx ·

∫
f(y)dy

Fubini’s Theorem dictates that the order of integration does not matter. Tho one might be easier!

Double Integrals over General Regions:

D

x

y

The double integral aka the volume below the surface f(x, y) in the region D is equal to:

•
∫∫

D
f(x, y)dA =

∫ b

a

[∫ g2(x)

g1(x))
f(x, y)dy

]
dx

aka : left → right, bottom → top
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EXAM 2 NOTES

•
∫∫

D
f(x, y)dA =

∫ d

c

[∫ h2(y)

h1(y))
f(x, y)dx

]
dy

aka : bottom → top, left → right

Fubini’s Theorem dictates that the order of integration does not matter. Tho one might be easier!

Double Integrals in Polar Coordinates:

x

y

D

The double integral aka the volume below the surface f(x, y) in the region D is equal to:

•
∫∫

D
f(rcos(θ), rsin(θ))dA =

∫ β

α

∫ b

a
f(rcos(θ), rsin(θ))rdrdθ

Quadric Surfaces:

Ellipsoid Cone Hyperboloid of One Sheet

x y

z

x y

z

x y

z

x2

a2
+ y2

b2
+ z2

c2
= 1 x2

a2
+ y2

b2
= z2

c2
x2

a2
+ y2

b2
= z2

c2
+ 1

Hyperboloid of Two Sheets Elliptic Paraboloid Hyperbolic Paraboloid

x y

z

x y

z

cell6

x

y

z

x2

a2
+ y2

b2
= z2

c2
− 1 x2

a2
+ y2

b2
= z

c
x2

a2
− y2

b2
= z

c
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UCF

Calc III

– EXAM 3+ NOTES

The following topics are covered:

□ 5.4 - Triple Integrals

□ 2.7 - Cylindrical & Spherical Coordi-
nates

□ 5.5 - Triple Integrals in Cylindrical &
Spherical Coordinates

□ 6.1 - Vector Fields

□ 6.2 - Line Integrals

□ 6.3 - Conservative Vector Fields

□ 6.4 - Green’s Theorem

□ 6.5 - Divergence & Curl

□ 6.6 - Surface Integrals

□ 6.7 - Stokes’ Theorem

□ 6.8 - Divergence Theorem
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EXAM 3+ NOTES

Coordinate Systems:

x
y

z

x y

z

(x, y, z)

x
y

z

θ

z
r

(r, θ, z)

x
y

z

θ

ϕ

ρ (ρ, θ, ϕ)

Rectangular Cylindrical Spherical

Triple Integrals:

• Rectangular Coordinates:∫∫∫
ϵ
f(x, y, z)dV =

∫ b

a

∫ g2(x)

g1(x)

∫ h2(x,y)

h1(x,y)
f(x, y, z)dzdydx

• Cylindrical Coordinates:∫∫∫
ϵ
f(x, y, z)dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ g2(rcos(θ),rsin(θ))

g1(rcos(θ),rsin(θ))
f(rcos(θ), rsin(θ), z)dzrdrdθ

• Spherical Coordinates:∫∫∫
ϵ
f(x, y, z)dV =

∫ d

c

∫ β

α

∫ b

a
f(ρsin(ϕ)cos(θ), ρsin(ϕ)sin(θ), ρcos(ϕ))ρ2sin(ϕ)dρdθdϕ

Vector Fields:

• in R2 F⃗ (x, y) = P i⃗+Qj⃗ = ⟨P,Q⟩

• in R3 F⃗ (x, y, z) = P i⃗+Qj⃗ +Rk⃗ = ⟨P,Q,R⟩

ex. F⃗ (x, y) = i⃗+ x⃗j = ⟨1, x⟩:

x

y

Types of Vector Fields:

x

y

x

y

Radial ex. ⟨x, y⟩ Rotational ex. ⟨−y, x⟩
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EXAM 3+ NOTES

Line Integrals:

• With respect to x:
∫
C
f(x, y)dx =

∫ b

a
f(x(t), y(t))x′(t)dt

• With respect to y:
∫
C
f(x, y)dy =

∫ b

a
f(x(t), y(t))y′(t)dt

• Using potential(f):
∫
C
F · dr =

∫
C
∇f · dr = f(b)− f(a)

Finding the Potential Function (f) (vector field must be conservative):

1. If F is a Conservative Vector Field then F = ∇f

2. F = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩

3. Integrate:
∫
fxdx,

∫
fydy,

∫
fzdz

4. Determine sum that results in all first order partial derivatives

5. f = sum

Types of Regions:
Green’s Theorem requires the region to be simply connected.

Simply Connected Not Simply Connected

Conservative Vector Fields:
F⃗ = ∇f or

[
dP⃗
dy

= dQ⃗
dx

& dQ⃗
dz

= dR⃗
dy

& dR⃗
dx

= dP⃗
dz

]
or curl = 0

x

y

(notice how everything cancels)
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EXAM 3+ NOTES

Line Integrals in a Vector Field:
F⃗ (x, y) = P (x, y)⃗i+Q(x, y)⃗j in R2

Greens Theorem: The vector field must be over a simple connected region, and have contin-
uous partials. With respect to x & y:

∫
C
P⃗ dx+ Q⃗dy =

{
Flux =

∫∫
D
(P⃗x + Q⃗y)dA, counterclockwise = negative(−)

Circulation =
∫∫

D
(Q⃗x − P⃗y)dA, clockwise = negative(−)

Curl:
A measure of the ”spin” or circulation of the vector field around a point.〈

dR⃗
dy

− dQ⃗
dz
, dP⃗
dz

− dR⃗
dx
, dQ⃗
dx

− dP⃗
dy

〉
or

〈
d ⃗there
d here

− d ⃗here
d there

, ...
〉

Curl of ∇ = 0, in conservative vector fields F⃗ = ∇, therefore curl of conservative vector fields is
zero.

x (P⃗ ) y (Q⃗)

z (R⃗)

dQ⃗
dx

− dP⃗
dy

dR⃗
dy

− dQ⃗
dz

dP⃗
dz

− dR⃗
dx

• if curl = 0, vector field = irrotational & conservative

• if curl ̸= 0, vector field = rotational & nonconservative

• if curl > 0, evaluated counterclockwise

• if curl < 0, evaluated clockwise

Divergence:

div F = dP⃗
dx

+ dQ⃗
dy

+ dR⃗
dz

Source-Free vector fields are incompressible.

Sink Source Source-Free
div < 0 div > 0 div = 0
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EXAM 3+ NOTES

Parameterizing a Surface:
r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩
A surface is smooth if r⃗u × r⃗v ̸= 0⃗ ∀u, v. (fyi: ∀ = for all)

r(u0,v0)

t⃗v

t⃗u

n⃗

r⃗(u, v)

Surface Integral:
r⃗(u, v) = surface parameterization, t⃗ = tangent vector, n⃗ = normal vector

•
∫∫

S
f(x, y, z)dS =

∫∫
D
f(r⃗(u, v))

∥∥t⃗u × t⃗v
∥∥ dA

• in a vector field:
∫∫

S
F⃗ · n⃗ ds⃗ =

∫∫
D
F⃗ · (r⃗u × r⃗v)dA

Open vs. Closed Surfaces:
A Closed Surface completely encloses a three-dimensional region, an Open Surface does not.

Surface Orientation on Closed Surfaces:

+ orientation - orientation

Divergence Theorem:
For the surface integral of ϵ.
ϵ = a solid region in R3.
S = a boundary surface with positive orientation.
F⃗ = vector field in R3 & has continuous partials.∫∫

S
F⃗ · ds⃗ =

∫∫∫
ϵ
divF⃗ dV
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EXAM 3+ NOTES

Stokes’ Theorem:
For a surface integral integral around curve C.
S = positive oriented smooth surface.
C = a boundary curve.
F⃗ = vector field in R3 & has continuous partials.∫
C
F⃗ · dr⃗ =

∫∫
S
curlF⃗ · n⃗ ds =

∫∫
S
curF⃗ · (r⃗u × r⃗v) dA

Note: Stokes Theorem can be applied in both directions, but for testing purposes evaluate left
to right.
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