

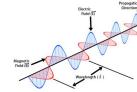
Foundations of Photonics

▲ THIS IS NOT OFFICIAL, USE AT YOUR OWN RISK ▲
ITEMS ARE NOT IN ORDER

Light

Photons, a particle/wave duality that transfers energy via an electromagnetic field and does not require a medium to propagate (Unlike mechanical waves which do).

Consists of a electric field (\vec{E}) and magnetic field (\vec{B}) which are perpendicular to each other, a travel along the direction of propagation.



1D Waves & Propagation

Something oscillating with time, and in some cases moving in space, described as a function $\psi(x, t)$.

The general wave equation is: $\psi(x, t) = A \cdot \sin(k \cdot x - \omega \cdot t + \varepsilon)$.

The phase term is $\phi(x, t) = (k \cdot x - \omega \cdot t + \varepsilon) \Rightarrow \psi(x, t) = A \sin(\phi)$
A complete cycle / wavelength corresponds to $\phi = 2\pi$.

Waves must satisfy the scalar wave equation: $\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$.

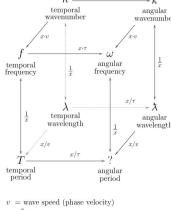
Propagating: Forward $\psi(x, t) = f(x - v \cdot t)$ or Backward $\psi(x, t) = f(x + v \cdot t)$

Harmonic waves are waves which travel one wavelength in one period:

$\psi(x, t) = A \sin(k(x - v \cdot t))$

Variables

Wavelength (λ) (m)	Temporal Frequency (f) (Hz)
Speed of Wave / Phase Velocity (v) (m/s)	Angular Frequency (ω) (rad/s)
Temporal Wavenumber (k) (m^{-1})	Phase (ϕ) (rad)
Amplitude (A) (V/m or A/m)	Angular Wavenumber / Propagation Constant (α) (rad/m)
Temporal Period (T) (s)	Initial Phase (ε) (rad)



Validating Waves

Generally waves can be verified using the following equation:

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} \quad \text{or} \quad \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

- Traveling waves must have a term in the phase of the form $\pm \omega \cdot t$.
- Waves must have a spatial component of the form $k \cdot \vec{u}$. \vec{u} is a unit vector.
- Wave must not change in amplitude over distance or time to be considered valid in our case. Therefore the following is not valid:
 $\psi(x, t) = \frac{1}{z^4} \cos(k \cdot z - \omega \cdot t)$

Complex Numbers

Form	Equation	Conversion
Rectangular	$a + ib$	To polar: $A = \sqrt{a^2 + b^2}$, $\phi = \tan^{-1}(\frac{b}{a})$
Polar	$Ae^{i\phi} = A\langle\phi\rangle$	To rectangular: $a = A\cos(\phi)$, $b = A\sin(\phi)$
Operation	Property	
Addition	$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$	
Subtraction	$(a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + i(b_1 - b_2)$	
Multiplication	$A_1 \langle\phi_1\rangle \cdot A_2 \langle\phi_2\rangle = (A_1 \cdot A_2) \langle(\phi_1 + \phi_2)\rangle$	
Division	$\frac{A_1 \langle\phi_1\rangle}{A_2 \langle\phi_2\rangle} = \frac{A_1}{A_2} \langle(\phi_1 - \phi_2)\rangle$	
	deg 0° 30° 45° 60° 90°	Im A
	rad 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$	Re b
	sin 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ 1	
	cos 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 0	
	tan 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ Und.	
	$1 + i = \sqrt{2} \angle 45^\circ$	
	$\{a + ib\}^* = a - ib$	
	$\frac{1}{i} = -i$	

Euler's Formula: $e^{i\phi} = \cos \phi + i \sin \phi$, $\cos(\phi) = \frac{e^{i\phi} + e^{-i\phi}}{2}$, & $\sin(\phi) = \frac{e^{i\phi} - e^{-i\phi}}{2i}$

The wave equation: $\cos(kx \pm \omega t + \varepsilon) \rightarrow \text{Re}[Ae^{\pm i(kx - \omega t + \varepsilon)}]$

Propagating: Forward $\psi(x, t) = \text{Re}[Ae^{i(kx - \omega t + \varepsilon)}] \rightarrow Ae^{i(kx + \omega t)}$
or Backward $\psi(x, t) = \text{Re}[Ae^{-i(kx - \omega t + \varepsilon)}] \rightarrow Ae^{-i(kx + \omega t)}$

Warning time dependence can only be recovered if:

- Typically addition and/or subtraction.
- Multiplication and/or division are by a real quantity.
- Differentiation and/or integration are by a real variable.
- Avoid vector dot and cross product like the plague.
- Be aware of the pointing vector $\mathbf{S} = \mathbf{E} \times \mathbf{H}$.

To recover consider the following example:

$$\begin{aligned} \psi(x) &= Ae^{i(kx + \varepsilon)} + Ae^{-i(kx + \varepsilon)} = 2A \cos(kx + \varepsilon) \\ &\text{recover time dependence} \rightarrow 2A \cos(kx + \varepsilon) \cos(\omega t) \end{aligned}$$

Plane/Spherical Waves & Wavefronts

Plane waves are a series of equally spaced (constant phase) wavefronts, which are planes whose normal axis is the direction of propagation (perpendicular) and are located at the minima and maxima of a wave. These waves can propagate.

$$\begin{aligned} \vec{\psi}(\vec{r}, t) &= \hat{A} \sin(\vec{k} \cdot \vec{r} - \omega t) = \hat{A} e^{i(\vec{k} \cdot \vec{r} - \omega t)} \\ \vec{k} &= k_x \hat{i} + k_y \hat{j} + k_z \hat{k}, \quad \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}, \quad \& \quad \vec{k} \cdot \vec{r} = \text{constant} \\ |\vec{k}| &= \frac{2\pi}{\lambda} = \sqrt{k_x^2 + k_y^2 + k_z^2} \quad \& \quad \alpha^2 + \beta^2 + \gamma^2 = 1 \end{aligned}$$

Cartesian form: $\vec{\psi}(x, y, z, t) = \hat{A} e^{k_x x + k_y y + k_z z - \omega t} = \hat{A} e^{k(ax + \beta y + \gamma z) - \omega t}$

Spherical waves are similar to plane waves however they radiate outward from a source, or example ripples from a falling object.

$$\psi(x, y, z, t) = A \frac{\cos(k \cdot r - \omega t)}{r}$$

3D Waves

A wave who propagates in a direction in 3D space (x, y, z) :

$$\begin{aligned} \psi(x, y, z, t) &= A \cos(k_x x + k_y y + k_z z - \omega t) = A \cos\left(k \left(\frac{\alpha x + \beta y + \gamma z}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}} \right) - \omega t\right) \\ k = \frac{2\pi}{\lambda} &= \sqrt{k_x^2 + k_y^2 + k_z^2} \quad \& \quad \frac{\alpha x + \beta y + \gamma z}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}} \text{ is the unit vector of our direction of travel.} \end{aligned}$$

3D waves must satisfy the 3D scalar wave equation: $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$

The Laplacian operator is $\nabla^2 \psi$ where: $\nabla^2 = \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2}$
To verify whether two waves are parallel or perpendicular:

- If the cross product = 0 then the two vectors are parallel:

$$\vec{a} \times \vec{b} = \frac{i}{b_x} \hat{a}_x \hat{a}_y \hat{a}_z = \hat{i} [\hat{a}_y \hat{b}_z - \hat{a}_z \hat{b}_y] - \hat{j} [\hat{a}_x \hat{b}_z - \hat{a}_z \hat{b}_x] + \hat{k} [\hat{a}_x \hat{b}_y - \hat{a}_y \hat{b}_x]$$

- If the dot product = 0 then the two vectors are perpendicular:
 $\vec{a} \cdot \vec{b} = \hat{a}_x \hat{b}_x + \hat{a}_y \hat{b}_y + \hat{a}_z \hat{b}_z$

Superposition

The combination of two or more waves.

- When two waves are in the same region of space / overlapping $\psi_{\text{total}} = \psi_1 + \psi_2$.

- When they don't overlap they pass through unaffected.

- The disturbance only occurs on the overlap.

Interference: Constructive $\psi_1 + \psi_2 > \psi_1$ and ψ_2 or Destructive $\psi_1 + \psi_2 = 0$

Power: $P = E^2$ and In a transparent dielectric medium: $v = c/n$

To solve $\psi_1 + \psi_2 + \dots + \psi_n$, you can either compute using complex addition and subtraction or use the following trig. formulas.

- $\cos(A) + \cos(B) = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$
- $\sin(A) + \sin(B) = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$
- $\cos(A) - \cos(B) = -2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$
- $\sin(A) - \sin(B) = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$

Base Units			Prefixes	
Quantity	Unit	Symbol	Prefix	Power
Length	meter	m	zetta-	(Z) 10^{21}
Mass	kilogram	kg	exa-	(E) 10^{18}
Time	second	s	peta-	(P) 10^{15}
Electric Current	ampere	A	tera-	(T) 10^{12}
Thermodynamic Temperature	kelvin	K	giga-	(G) 10^9
Amount of substance	mole	mol	mega-	(M) 10^6
Luminous Intensity	candela	cd	kilo-	(k) 10^3
Derived Units			hecto-	(h) 10^2
			deka-	(da) 10^1
Frequency	hertz (Hz)	s^{-1}	- Base -	
Force	newton (N)	$kg \cdot m/s^2$	deci-	(d) 10^{-1}
Energy or work	joule (J)	$N \cdot m$	centi-	(c) 10^{-2}
Power	watt (W)	J/s	milli-	(m) 10^{-3}
Electric Charge	coulomb (C)	$A \cdot s$	micro-	(μ) 10^{-6}
Electric potential	volt (V)	J/C	nano-	(n) 10^{-9}
Electrical Resistance	ohm (Ω)	V/A	pico-	(p) 10^{-12}
Electrical Conductance	siemens (S)	A/V	fento-	(f) 10^{-15}
Electrical Capacitance	farad (F)	C/V	atto-	(a) 10^{-18}
Magnetic Flux	weber (Wb)	$V \cdot s$	zepto-	(z) 10^{-21}
Inductance	henry (H)	Wb/A		

♡ Made by Kiva M. and others??? (pretty please) ♡