A THIS IS NOT OFFICIAL, USE AT YOUR OWN RISK

ITEMS ARE NOT IN ORDER A

An Operational Amplifier (Op-Amp) changes the voltage, current, and/or power
of a signal. Operations include:

V&
Sum Differentiation % Scaling v, & i
Difference Integration f Jdt  Sign Changes V, :I>v0
An Ideal Op-Amp makes the following assumptions: Vee

Vp = Vi (Virtual Short) iy =iy :=0 i, = —(icc+ +icc-) #0 R = Reg (internal)

. v Vee A (Vo = Vi) < Ve .
Gain=A= V,= A(Vp:V,l) VCSA(V,,—VH)%VCC
Vi AV, = Vi) > Vi

Solving Op-Amp Problems:

KCL at terminals V}, & V,, (i = i, := 0) — Set V, equal to V;, — Solve for V,
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Types of Op-Amps

Non-Inverting: Amplifies the input voltage R, R

while preserving polarity.
. Ry

Gain=1+ ¢~

Inverting: Amplifies the input voltage while R. B
reversing polarity.

. Rf
Gain = -

Buffer: Matches the impedance of the input
to that of the output circuit.
Gain=1
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Potentiometers

A potentiometer is a variable resistor. The resistance (1-a)Ra
can be described by an active resistor and a groun- —%7 5

) - " - ! aRa
ded/inactive resistor, whose ratio is defined by a.
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Laplace Transforms

Type ft)t <0-) F(s)=Zf(t) Graph

Impulse o(t) 1 I E—
Y

Step u(t) %,s >0 I —

A . rop~

Exponential et ﬁ,s >a — T

Ramp n %, s>0 f_ky

Sine sin(wt) 5> 0 *Pv%zy
0

Cosine cos(wt) ﬁ,s >0 *v%ﬁ,
fo ﬁ

Damped Ramp ~ e~t" s > a E—

Damped Sine e~ sin(wt) s> a *%Av‘r
o

; o—at sta |
Damped Cosine e~ cos(wt) Groprat S >4 N

Linear Circuits II [Universal Method]

Property Transform Pair/Property
Linearity ax(t) +bo(t) & aX(s) +bV(s)
Right shift in time x(t=c)u(t—c) o e X(s), c>0

Time scaling x(at) & 1X(2), a>0

Multiplication by a power of ¢ tNx(t) & (1N i—\iX(s), N=1,2,..
Multiplication by an exponential e x(t) < X(s —a), a real or complex
Multiplication by sin(wt) x(t)sin wt & % [X(s +jw) = X(s — jw)]
Multiplication by cos(wt) x(t)sin wt & % [X(s +jw) + X(s — jw)]
x(t) & sX(s) — x(0)

# > 52X (s) = sx(0) — %(0)

*MN(1) & sNX(s) = sN1x(0) = sN2x(0)...
—... = sx(N=2(0) — x(N-D)(0)

J x(dd & 1X(s)

x(t) *o(t) & X(s)V(s)

x(0) = limg_,00 X(s)

#(0) = limg e [$2X(s) — sx(0)]

*MN(0) = limg_e0[sN 1 X (5) — sN x(0)...
—sN=1%(0) - ... — sx(N=1)(0)]

If limy o x(t) exists, then lim; o0 x(t)...
= lim;_0sX(s)

Differentiation in the time domain

Second derivative
N Derivative

Integration

Convolution

Initial-Value Theorem

Final-Value Theorem
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Laplace Transform of RLC Circuits

Expressing circuits using Laplace allows the easy analysis of step/natural res-
ponse in the RLC circuit, as we can use our standard techniques of analysis
such as nodal, mesh, KCL, KVL, Ohm’s Law, etc... in the s-domain. Effectively
s = jw. Remember if non-zero initial conditions exist to express them via LC
source transformation.

R L R Ls

. Lo 2 . L2 .
t-Domain Circuit — s-Domain Calculation — t-Domain Answer
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Transfer Functions & Damping

LC Transformation

Inductors & capacitors can undergo source transformation, just like resistors.
However unlike resistors they can be sources themselves, in that case the voltage
(capacitor) or current (inductor) source is their initial value Vp or Io.

s W

A method to calculate the output signal (y(¢) = Y(s)) of a circuit from the circuit’s
transfer function (h(t) = H(s)), input signal (x(t) = X(s)), & signal duration (t).
y(t) = x(t) * h(t)

Piecewise

Time Domain (t)
Continuous

N :
VA t o

) =) @

wet<hy

Ji 2= 1m(ayaa

- (= Hr(1)dA

[\;"‘ x(t = )h(1)dA
Laplace Domain (s) + gy X = DB

y(t) = x(t) * h(t) & Y(s) = X(s) - H(s) /':“2‘ *(E= )h(A)dd
Z7HY(s)} = y(t), don’t evaluate foag = D

Draw your graphs. Identify the domain. Choose and flip a function. Shift func-
tion by ¢ in A space. Construct the integral(s). Solve the integral. If necessary
plugin t.
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Sifting Property of the Impulse Function

The Dirac/delta/impulse function is defined by: f_ Z 6(t)dt =1, this states that
there is a vertical line with height infinity whose encompassing area equals one.
The sift property creates a infinite vertical line at the point (A, 0) whose area is
defined by the function ¢(A). This allows the extraction of a point value.

2 )5t = Ndt = p(A)

The transfer function H(s) allows a generalized relationship for the input and
output over any given range of values.

Y(s) = H(s) » X(s) Tou = H(s) = Gain

Output  Function Input
1(s1n(wt))T

(s—r)s—r) Poles: Where an equation is undefined (y — o) ex. 73 & r4

(s=r3)(s=74) Zeros: Where an equation is zero (y = 0) ex. 11 & 2

Over-Damped (O) Critically-Damped (C)
Clk"lt + Cz(f’zt Clé’rt + Czt@”

Real Roots

Under-Damped (U)

Cie"tt cos(wt) + Core™ sin(wt)

Real Repeated Roots Complex Roots

-




Passive Filters

Passive filters are RLC devices that modulate the frequency of a system without
adding power. Cutoff frequency (w.), where the output begins being considered
zero. Bandwidth (B), width of domain in which the output is considered.
Quality factor (Q), describes how purely resonant the system is.

+ Note all formulas below are in rad/s, Hz = mdn/’ & rad/s = 2mn - Hz.

2
High Pass RC | High Pass RL | Low Pass RC | Low Pass RL
g R R L
f—— : - : :
Circuit Vi R% v, v ,E v v 4‘J~\I, v REV,
T
. jaw
H(jw) jm/m;f
IH(w)l ——
<H(jw) tan™! (L)
we X ‘ &
Graph
Band Pass Band Reject
L g
F=wrer— 4 z L
Circuit Vi REV, B .
v v ——
N c v RV
v C L3V S -
. Biw (jo)2+w?
H(jw) (jw)2+pjo+wl (jwP+pjotw?
) B vl
[H(w)l S22+ (wp)?
. e -1 wp —1(_wp
<H{ja) -t (5) ~tan (245)
wo V@ e, = ,l%
B Wey — W series: & parallel: s
2 1 L’ RC
3\2
@eq,0o ig + \/(%) + m%
Wy series: L . RC
Q series: || =7, parallel: N
e
Pass
i R (o
Graph v : ;\‘ v :
Stop : : Stop :

Pole Zero Plots

Filters both active and passive can be identified using the distribution and number
of zeros (numerator) and poles (denominator). Displayed below are the simplest
examples:

High Pass Low Pass Band Pass Band Reject

Zeros: 1 Zeros: 0 Zeros: 1 Zeros: 2
O Zeros
x Poles Poles: 1 Poles: 1 Poles: 2 Poles: 2
Order: 1 Order: 1 Order: 2 Order: 2

Active Filters

Active filters are RLC devices that modulate the frequency and power of a
system. Whereas passive filters have a gain of 0 < A < 1, active filters require
power allowing gains of K > 1.

High Pass (RC) Low Pass (RC) Gain
Ry { Ry
Circuit " h S I/'Jéglﬁ X
&“W— ﬁ v, C[)_‘M v W v,
; ja @
H(jw) Kot Krora: K
[H(jw)] K—L— K—L1— K
V) 1+()
<H(jw) tan! (4*) —tan~! (ﬁ) 0 rad
we R}(‘ R}C N/A
i
K ®

G

Cascade filters, are multiple filters linked together in series and/or parallel. As
a result their effects stack, allowing the creation of band pass, band reject, and
other complex filters from simpler filters such as high and low pass.

Band Pass (RC) Band Reject (RC)
Circuit .
R _ Bjw (jw)*+w?
H(jw) (oP+pja+al (jop+pjw+a?
wf —w*+w?

Hii K K———@Hwy
[H(jw)l J@2-w?+(wpy w22 +(wp)
. o1 (_wp 1 (_wp

<H(jw) 7 —tan (mg_mz) tan (mf,—mz)
- 1
o VB @y = VRLRuCLCl
B Wey = Wey
-1 _ 1 _ 1 _ 1
@ey,ep Ve = Rucy Yo T RCL ‘ @Wer = ReGp Y2 T Ry
Q [ S—
P~ {wey—we ) VRLRuCiln
Ry
K ®

Cascade Filters <

Higher Order Filters N

As filters are placed in cascade their effects multiply N
raising the order of the final transfer function. As <

order increases the filter will increase the roll-off 2 .

slope (dB/decade) approaching an exclusively = :

pass-band domain. Slope = 20ndB/decade.

Amplitude cutoff is at —3dB. TG RE T 2
ex. nh-order Low Pass Filter

Vap = 20logy, |[H(jw)l  Pap = 10logyy [H(jo)l  pje) - (m)“ &Ky =V¥2-1

Filter Scaling

Filter Scaling allows the creation of filters (both active & passive) using their
prototypes in the form R = 1Q, L = 1H, and C = 1F ... and subsequently scaling
those values to the desired ones, using the scalars K, & Ky.

1H Mag | Freq | Mag & Freq
——] Resistance () | KuR | R KuR
V; 103V,  Inductance (L) | KuL | £L L
Capacitance (C') | ¢=C | C ©or; C
ex. Prototype Band-Pass Frequency (') @ Kyw Kyw
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Two Port Networks “

Two Port Networks and their parameters allow us to relate
their voltages to currents and make predictions about their
behavior. The networks are typically characterized in the
s-domain, and must follow a set of assumptions about their
inner workings:

¢ No energy initially stored.
¢ No independent sources.
e Current in a port = Current out that port.

e All external connections must be made to either the
input or output port.

Impedance Admittance

Vi =znl +zph| (V1 zn ziz||h h=yuVi+ynVal|h yn o yiz| (Vi

Va =zl +2nh||V2 21 2| |k L =ynVi+ynV2 ||k yn  yz||[V2

Hybrid Inverse Hybrid

Vi=huli+hpVa| |V ki i (I h=guVi+gnb||lh g gi2| (V1

I =hnli +haVa || I2 ha1 ha| | V2

Vo =gnVi+gnbh||V2 o1 g2||k

Transmission Inverse Transmission

Vi=anVa +a(-h)||V1 a;p a|| V2

Vo =buVi+bip(=h)||Va bir bpf (Vi

L =bynVi+bn(-h) || by bx||-h

L =anVa+an(-h) ||k ay  an| |-k
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Interconnection of Networks “

Parallel

Series

Cross Product

Au Au] [Bu By

Va A x[8] [,u t} % [rm /u]
dis- B+ A B Au- B+ A

dov- By + Az Bay A+ Bra+ Am

Matrix Addition
An Au] | [Bu B
Vi (4] +(B] [,1} ‘,‘] y [/;‘: /;‘”]

Ay + By Aw+ By
21+ Bay Az + B




Parameter Conversion

'Wo rmulas Cont
i © A? =211 2902127 .
Determinant: A? =?11222—?12721 . Ly Z,
. . yo -ye | ah b | 1 82 | an  Aa | bn 1 27 Ttz VnTAyZg
s 1 12 Ay Ay h» hn I3 I35 az1 a1 by bn 7 Zg+hyy
Th - S,
5 2 _yn oyn | zha 1 g1 A3 | 1 ap | AL b i Zg +AR
21 22 Ay Ay Ty hn g g ay  an b1 b tptanZy
—z12 1 -hp | A8 g2 | am  -Aa | bu -1 ant+anZg
Az o Y2 | my Iy o o 4 an b2 b
y , ; b —2 Yo
-2z hxn Ah &1 1 =1 an —Ab by z0+7] yu+AyZy
z z Y21 Y2 T hn 8»  8» ap ap by by
I hay —821
Az oz | L T |y I g2 g2 | an  Aa | b 1 I T+ 7Z; suZi+Ag
hl®= = i [ 11 12 | Az Ag an  ax» b b
o Ay 2 g Ab b i oAb
-z 1 Y Ay 821 & =1 221 = 021 anZi+ax bi+bnZ
o T | yn har  h2 Ag  Ag | a2 an Tn i ! Ly
Z, —yaZi
1 oz | Av oy | by chp ag  —ha | by -1 P v Tos
g | |2 W A An | 811 812 | @y Gy | by by ZuZi+hz T+y2Z1
Y ~hnZ 8171
Az | T | chy hn 1 ap | A bp Z Ny =~
Zu_ Zu R A An [ 821 82 | @y @y | by b ! AnZi+hn 82+Z1
Zr AbZp
z11 “Y2 o -1 =Ah  =hn 1 & b2 b1z —_—L ) A,
a N Vo Vol Tt T | 3 on ap; A Ab Ab anZpt+an bia+bnZL
1 Ay ozyn | chy -1 | gn A |, B by by 7y ynZi
221 Y yn hy ha 821 & 21 22 Ab Ab (z11+Z¢)(z02+Z1)~212221 vy ZgZL~(1+y1 Zg)(1+y2ZL)
o Az | Ton ol | 1L by | AR e |am e | g ? ~hmZy %
b | ™ 12 V2 Y2 2 g2 g Aa Aa n 12 8 (h+zg)(I+hnZ)—hi2hn 7, (1+8117¢)(820+71)-g128217¢
1 21 “Ay oy hyn AR -gu1 -1 anoan |, b __ZL _ AbZ;
z12 n yi2 Y12 h1z hi2 812 &2 Aa Aa 21 2 (an+axnZg)Zr+anx+anZy b+ Zg+bnZi+bnZeZ1
L L
'wo Port Formulas r—m
Zq I I Base Units Prefixes
Quantity Unit Symbol Prefix Power
" "
: Length meter m zetta-  (Z) 10%!
Vy Vil N~ (Vo []Zy 8 ‘ B
- - Mass kilogram kg exa- (E) 10
T Time second s peta-  (P) 10'®
2 .
Electric Current ampere A tera- (T) 1012
N/A . . .
Thermodynamic Temperature — kelvin K giga-  (G) 10°
. hihnZ7;

Zin - 15,7, N/A Amount of substance mole mol mega- (M) 10°
auZitay bppZy+byy Luminous Intensity candela od kilo- (k) 10°
anZi+axn bnZi+bn Derived Uni

erive nits 2
NJA ezt . i hecto- (h) 10
Y1 T Ty, Quantity Unit (Symbol) Formula deka (da)10!
Yin N/A 811 — ;Lf;, Frequency hertz (Hz) 51 _ Base —
-2
N/A N/A Force newton (N) kg-m/s deci- @) 10!
Energy or work joule N-m . _
—znV, yn Ve 8y J 0 centi- (c) 1072
(zn+Z¢)(z2+Z1)-z1221 TynZ +AyZeZ1 Power watt (W) /s i 103
I ha Ve gV ) milli-  (m)
(hnZ) i+ 2 -hohaZr | (FguZ)(gn+Z1)—gugnZ Electric Charge coulomb (C) A-s micro- (1) 10-6
-V —V,Ab . .
anZitantanZeZ +anZy biZg+bnZ ZL+1722ZL+?'12 Electric potential volt (V) Jic nano- (n) 1077
m y —y Ve Electrical Resistance ohm (Q) V/A pico- (p) 10712
zn+Zg 8 y2+AyZg . .
. Electrical Conductance siemen: AV _

Vin —ha Vg sV Co s s©) / fento- () 1071°

hoaZg+Ah TrguZg Electrical Capacitance  farad (F) c/v atto- (@ 10718
Ve Ve Ab )
TranZy TotbnZy Magnetic Flux weber (Wb) Vs zepto-  (z) 10721
~ Inductance henry (H) Wb/A
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