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Analog v. Digital

Analog signals have a continuous range of ampli-
tude, while digital signals have discrete amplitude

values.

Analog can be converted to digital via quantization,
the process of cutting a signal at a certain period and
rounding to the nearest discrete value.

Finite energy = Energy Signal

Finite & non-zero power = Power Signal
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Signal Classification

Classification

Definition

Continuous-Time
Discrete-Time
Analog

Digital

Periodic
Aperiodic
Energy

Power
Deterministic

Probabilistic

Defined for continuous range of time.
Defined for discrete range of time.
Amplitude can take infinite number of values.
Amplitude can take finite number of values.
Satisfies g(t) = g(t + Tp) for all ¢, aka repeats.
Does not repeat.

Has finite energy.

Has finite/non-zero power.

Described via mathematics.

Described as random/noise.

Signal Operations

Operator Expression Graph
Original q(t) ]‘/\vp
Time Shifting 2(t) = gt + ) NN

Time Scaling

Time Inversion

Amplitude Inversion g(t) — —g(t)

g(t) — glat)

g(t) — g(-t)

d

Laplace Transforms

Type f)t <0-) F(s)=Zf(t) Graph
)

Impulse o(t) 1 ;
fHp——

Step u(t) 1s>0 ;
()

Exponential et ﬁ, s>a ‘ ,
W

Ramp t" sf%, s>0 ;
fty

Sine sin(wt) 72,8 >0 \//\\//T
fr)

Cosine cos(wt) Szj_7, s>0 \//\\//’

Damped Ramp ~ e~¢" #, s>a [ ;
f)

Damped Sine e~ sin(wt) T s> a «
f(t)

Damped Cosine ¢~ cos(wt) (S+Z;§"+w2 ,$>a =

~
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Signal Characteristics

Channel Bandwidth (B) is the range of frequencies that can transmit with good
quality. The SNR or Signal to Noise Ratio describes how easy it is to recover a
signal.

SNR = Signal Power
"~ Noise Power

High SNR means more signal levels and thus more bits per pulse, whereas
higher bandwidth means more pulses per second.

This culminates in Channel Capacity (C) which is the maximum number
of binary bits that can be transmitted in a second.

C=B-log, (1 +SNR) bit/sec

(For a channel with additive Gaussian white noise.)

Complex Numbers

j=v-1

Form Equation  Conversion

Rectangular a + jb To polar: r = Va2 + 12, <0 = tan‘l(%)
Polar rel% = r<@ Torectangular: a = rcos(0), b = rsin(0)
Operation Property

Addition (a1 + jb1) + (a2 + jbp) = (a1 + az) + j(b1 + by)
Subtraction (a1 + jb1) — (a2 + jby) = (a1 — ap) + j(b1 — by)

Multiplication r1<6; - r2<65 = (r1 - 12)<(61 + 62)

Division L0l = (0 — 0,) !
deg 0° 30° 45° 60° 90°
nd 0 F % 3 3 R
S 1+ = V2<45°
cos 1 % % 3 0 {a+jb} =a—jb
tan 0 % 1 V3 $$ % =-j

Euler’s Formula: ¢/ = cos 0 + j sin 0

Sifting Property of the Impulse Function

The Dirac/delta/impulse function is defined by: f_ o; O(t)dt = 1, this states that
there is a vertical line with height infinity whose encompassing area equals one.
The sift property creates a infinite vertical line at the point (f,0) whose area is
defined by the function ¢(T). This allows the extraction of a point value.

[ o5t - T)dt = $(T)

Signals as Vectors

Signals can be considered as vectors in a mathematical space, represented by
their magnitude and phase. These signals can be decomposed into orthogonal
components, such as cos(x) and sin(x), or ¢/ and e7/9.

For a trigonometric Fourier series, the vector representation would be:

. /ﬂn/ bVl)

Where gy represents the DC component, a, are the coefficients of the cosine
terms, and b,, are the coefficients of the sine terms.

(ap,a1,b1, ..

Conversely, for the exponential Fourier series, the representation would be:

<D—n/"' ,D_l,DO,D],"‘ /Dn>

Where D,, represents the complex Fourier coefficients corresponding to both
positive and negative frequencies, including the DC component Dj.
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Vector Operations

Magnitude of a vector: ||d|| = \/a% + a% bt a2
Angle between vectors: d - b = ||d||||b]| cos 0 & a x b = ||d]|||b]| sin O 7i
Unit/Normalized Vector: 4 = ﬁ

Inner /Dot Product (if 0 then vectors are orthogonal): 4-b = a1by +axby +- - - +a,b,

Cross Product (if 0 then vectors are parallel):

L]
ixb=dc @y @ =ild,b - a.by | - |dbe - 0] + k|36 -5
by b, b,

ab

lall |

Scaler Projection: comp ; b = ﬁ

|:u

Vector Projection: proj ; b=

=

Signal Energy & Power

Energy = E, = /_0:0 |g(#)|2dt
PdBW =10- 10g10 p

Power = Py = 4 [ |g(t)|?dt

Pagm = 30 + Papw
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Signal Approximation & Correlation

To approximate a signal g(¢) in terms of another x(t), apply:

(8, %)
(x,x)

[}
= Error = e(t) = g(t) —cx(t),t € [t2,t1] & Error Energy = E, = / le(t)|?dt

t1

gty =

where ¢ = —

g(t) = cx(t), t = [t1,t2], 3
x Jhy

Measure of Similarity (c) describes how well a signal can replicate another.

Description Equation
. . . t . ,
Correlation Relationship p= ElgEZ ft12 z(t)g*(t)dt = Héﬁﬁll\

between two signals.

Cross-Correlation

Similarity between Prg(T) = /j; z(t)g*(t — 7)dt
two different signals

over time.

Auto-Correlation | Similarity of a signal  ¢¢(7) = [ o; g(t)g(t + 7)dt

with itself over time.

-1<p<1 -1 . p=0 p=1 .
1< cosO<1 o Opposite, §=1 Orthogonal, & 0=0 Identical
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Gram Schmidt Method

Orthogonal signals are signal vectors who are at a right angle or are 5 out of phase
of one another. cos(t) & sin(t) are examples of orthogonal and basis functions.

=0 = Orthogonal
=1 = Normalized

/tz Xm(£)x;, (£)dt = E,

f

Where x,,(t) & x,(t) are two separate signals. The conjugate transformation
accommodates for complex signals.

To orthogonalize a set of vectors 071, 03, - - -, Uk perform the following operation:

— -

U1 =701 Uy = Uy — proju»1 Vo Uz = U3 — projl;1 U3 — projﬁzvg
k

_—_ -1 .
Uk =Tk — Z:]':1 pI‘O]u/,Uk
The new set of vectors i1, uly, - - - , fx are mutually orthogonal and normalized.

While the magnitude has changed the resulting summation of vectors still results
in the same direction as the summation of the originals.

Trigonometric Fourier Series

The Trigonometric Fourier Series approximates functions through the summation
2n

of increasingly higher frequency cos & sin terms. T = Z¢ = 27 f

gt)=ao+ Z ay cos(nwot) + by sin(nwet), t1 <t <t +Tp

n=1
_ 1 t1+To _ 2 t1+To
ap = Toft] t gT(t)dt an =% |, g(t) cos(nawot)dt
+ .
b, = T% tll 0 g(t)sin(nwot)dt  wheren =1,2,3,---

Alternatively a function can be expressed in the Compact Fourier Series form.

g(t)=Co+ Z Cpcos(nwot +0,), h<t<t+Tp

n=1

Cy = a2 +b3?
Ifodd g(t) = -g(-t) > a, =0 Ifeven g(t) = g(—t) > b, =0
NN M A
.S/ VN I W S vV Sy | vy

n=1 n=3

0, = tan~! (i)

an

Cozllo

n=9

Exponential Fourier Series

By using Euler’s Formula the Trigonometric Fourier Series can be described in

exponential terms. ‘
e/nwot

e—jnmot

cos(6) = ef94e7i0

Py cos(nwot)
sin(0) = L=

io _ ..
e/¥ = cos(0) +jsin(B) — sin(nwot)

Euler’s Formula

(S
g(t) = Z Dnejnmot = Do+ Z Dne]’nwot + D_ne—jna)ot

Nn=—o00 n=1
1 —jnwot
Do =Cy=ag D, = — g(t)e Jn@wot gy
- To Jr,
D, = 5Cpel% .
D_: _ ;C:e‘fe" where D, =D?,, |Dy| =|D-4|, & /D, =-/D_,
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Parseval’s Theorem

The energy of a signal in the time domain is equal when expressed in the fre-
quency domain.

E= LO (o) dt = %[m X ()] do = /_N x@nf) df

Signal Operations

Amplitude Inversion  g(t) — —g(t)

Operator Expression Graph
Original g(t) ,‘V\vp
Time Shifting gt) — gt +p) N N\

-+ NV \»
=1
Time Scaling g(t) — glat) T=4 ‘V\/\V’\\
Time Inversion g(t) — g(-t) \ »
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Fourier Spectrum

The Fourier Spectra allows visualization of the amplitude and phase over the
course of a Fourier Series function in terms of integer multiples (1) or integer
multiples of frequency (w = # - wy).

Consider C, & 0, or |D,| & /D, versus n.

Entirely even (a, # 0 & b, = 0) or odd (a, = 0 & b, # 0) functions lack the 0,, &
£D,, factor. It is only functions who are neither even or odd that require both sin
& cos components, and therefore 6,, & /D,,.
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Waveform Examples

Waveform Amplitude Spectra Coefficients
Square in(s)
. y = 2= Decay a9 =0
P
— a Ty
+A — " 4Asin(nmf
I_l l 0, = smn(;mTO)
—A ‘ I_l I_ Ty
—_ | 4 n
To b, =0
Triangular y = % Decay a5 =0
A
+ ’\ /\N /N n 8Asin( )’
AR . = PomE
— e S -
0 n
b, =0
Sawtooth y= % Decay to =0
+A
b \
AL
-A |
To | n p, =24
nT onn
Impulse Train No Decay ay = %
A n
M L e
—_—
‘ To | n
b, =0
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Table of Fourier Transforms

0 G Condition
e u(t) m .
eu(—t) a—j127'lf "
o az+(22—anf)2 a>0
te= " u(t) W .
tme "t u(t) W .
o(t) !

1 6(f)

2ot o(f - fo)

u(t) 20(f) + ]2;”/[

sgn(t) JZLﬂf

cos(27 fot Ju(t) 1160 = fo) +0(f + fo)| + %
sin(2nfob)u(t) § 160 = fo) = o + )] + -t

e~ sin(27t fob)u(t) W a>0
e~ cos(2m fot)u(t) % "
(%) Tsinc(mfT)

2Bsinc(27Bt) I (%)

A painc’ ()

Bsinc?(nBt) A (%)

Tne—oo Ot =nT)  fo Xl o 6(f = 1fo) h=1
e;% o\ 2me-2onf)




Properties of Fourier Transforms

Property Transform Pair/Property

g1(t) + g2(t) & Gi(f) + Ga(f)

kg(t) & kG(f)

G(t) & g(=f)

glat) & ﬁG (5)

g(t —to) & G(f)e 2/t

g(H)el™ht — G(f - fo)

g1(t) * g2(t) & Gi(f)Ga(f)

g1(t)g2(t) © Gi(f) * Ga(f)

g(t)sin@nfot) & 5 [G(f = fo) = G(f + fo)]
g(t)cos(2mfot) & 1 [G(f - fo) + G(f + fo)]
T o G G2nf)"

[ g@idx & 55+ 1600(f)

Superposition

Scalar Multiplication
Duality

Time scaling

Time Shifting
Frequency Shifting
Time Convolution
Frequency Convolution
Modulation via Sine
Modulation via Cosine

Time Differentiation

Time Integration
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Signal Distortion

There are four forms of distortion: linear, nonlinear, multi-path, & fading.

Distortion-less transforms include gain or time delay.
Where |H(f)| = k & 0,(f) = —2mfty
1 don(f)

Group Delay: t4(f) = "o dF

Linear distortions do not have a constant gain nor do they maintain a linear
trend of phase. Where |H(f)| # k & 0,(f) # —27mfta

Nonlinear distortions— distortions who do not obey typical trends.

Multipath distortions are where a signal arrives at the receiver through multiple
paths of different delays. Both magnitude and phase are periodic with respect
to frequency.

Fading is where the channel characteristics change overtime, this may be fre-
quency dependent.
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Ideal Filters

Ideal filters have a phase of 9,,(f) = —27nft4, aka a linear phase which results in
a time delay of t;.

[H(f)| [H(f)l [H(f)l
-B B -8 T B f ~fo U h f
Low-pass High-pass Band-pass

N Order Low-pass |H(f)| = ——— 3dB = \/% = 0.707
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Power & Energy Spectral Density

Energy: The essential bandwidth (B) will contain 90%, 95%, or 99% of the total
energy depending on the application.

Eg = / _1G()Pdf = / L Wa(Ndf, where We(f) =G

Power: So(f) = imr e LGt GT;f)lz

Pg = f—o; Se(f)df
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Amplitude Modulation

Message : m(t) Carrier: cos(2rf.t) Modulated : s(t) = km(t) cos(2mtf.t)

Original Modulated Demodulated

NN\
N

I~ N\,

>

Multiply message by carrier,
forms envelope

Multiply again,

Message being sent remove high frequency

Methods to demodulate:

e Synchronous Detection, where a carrier exactly matching the original is used
to demodulate. Must be used if signal is overmodulated i.e. u > 1.

e Envelope Detection, send a carrier along with modulated signal,
[A + m(t)] cos(...), an envelope exists if A + m(t) > 0 forall t. Mustbe 0 < p < 1.
Modulation Index p = %

@am = Acos(---)+m(t)cos(---) A 2 Mpeak(t)

carrier sidelzands
P. = ATZ P = mT(t) Power Efficiency n = Yseful Power P(ijps
Band Spectra
| 2A |
Baseband | / \ | N
- fc -B B f c f
1 ! A
Single Sideband Upper (USB) J‘ '\\
- fc f c f
1 ! A
Single Sideband Lower (LSB) '\ /I N
- fc f c f
k- 12 A
Double Sideband (DSB) AN P

All of the above examples are suppressed carrier (-SC).

Quadrature Amplitude Modulation (QAM), is where two AM signals are com-
bined to double the data rate. The upper channel is the in-phase channel, while
the lower channel is the quadrature channel.

@oam(t) = mi(t) cos(2m fot) + my(t) sin(2m fot)

Phase Modulation

PM and FM signals are interchangeable, replacing m(t) with f m(t)dt converts
FM to PM.

m(t) — — @pm(t) = Acos(2mfet + 2mtk,m(t))

Inst. Frequency f;(t) = 2 f. + 27k, _drslft)

All other values match FM.

kytit
. . — 14 14
Frequency Deviation AF = 5+
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Useful Integrals

Pretend there is a +C attached to the end of each of the below.

. fx”dx = ’}‘;L:ll . fdx =X . /cos(x)dx = sin(x)
o [sin(x)dx = —cos(x) e [sec*(x)dx =tan(x) e [csc*(x)dx =
— cot(x)
. fsec(x) tan(x)dx = . fcsc(x)cot(x)dx = . \/1‘11‘7 = sin"!(x)
sec(x) — csc(x)

dx

. f—\/% = cos~!(x) o [ = tan~1(x)

dx = -1 dx _ -1
o/ VT - S€C (x) of Ve OS¢ (x)
. / “;—" =log | x|

o [ = cor

° /exdx:e"

. /axdx =L . /cosh(x)dx =

log(a) )
sinh(x)
. /sinh(x)dx = . /tan(x)dx = . fcot(x)dx =
cosh(x) —log| cos(x)| log|sin(x)|

° /sec(x)dx =
log | sec(x) + tan(x)|

° /csc(x)dx =
—log| csc(x) + cot(x)|

/u-dv:u~v—/v~du+c

/ F(g(x) - g (x)dx = F(g(x)) + C

. flog(x) = xlog(x)—x

Integration by Parts

Reverse Chain Rule

© Made by Kiva M. © Check out more of my work at kivamccr.xyz <

Hilbert Transform

r

The Hilbert Transform is an ideal |,H(f |1 ,9’1 (f) T
phase shifter, that shifts the phase of N Tl 2
positive spectral components by —7. -
H(f) = =j - sgn(f) ] —
Frequency Modulation
Message : m(t) Carrier Frequency : f;
t
m(t) — — @rm(t) = Acos [2nfct + anf/ m(t)dt}

Due to frequency modulation’s constant amplitude it registers 30dB stronger.
As a result FM signals are more resistant to noise. While AM is linear, FM is
non-linear in nature.

kymy

2m
Power Py = ATZ

Inst. Frequency fi(t) = 2 f. + 2mkym(t)

Deviation Ratio f = 4 Carson’s Rule Bry = 2B(B + 1)Hz

Frequency Deviation AF =
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