
Signal Analysis & Analog Communication
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Analog signals have a continuous range of ampli-
tude, while digital signals have discrete amplitude
values.
Analog can be converted to digital via quantization,
the process of cutting a signal at a certain period and
rounding to the nearest discrete value.

Finite energy ⇒ Energy Signal

Finite & non-zero power ⇒ Power Signal

•

•

•

•

•

Analog v. Digital

Classification Definition

Continuous-Time Defined for continuous range of time.

Discrete-Time Defined for discrete range of time.

Analog Amplitude can take infinite number of values.

Digital Amplitude can take finite number of values.

Periodic Satisfies 𝑔(𝑡) = 𝑔(𝑡 + 𝑇0) for all 𝑡, aka repeats.

Aperiodic Does not repeat.

Energy Has finite energy.

Power Has finite/non-zero power.

Deterministic Described via mathematics.

Probabilistic Described as random/noise.

Signal Classification

Operator Expression Graph

Original 𝑔(𝑡)

Time Shifting 𝑔(𝑡) → 𝑔(𝑡 + 𝛽)
−𝛽

Time Scaling 𝑔(𝑡) → 𝑔(𝛼𝑡) 𝑇 =
𝑇0
𝛼

Time Inversion 𝑔(𝑡) → 𝑔(−𝑡)

Amplitude Inversion 𝑔(𝑡) → −𝑔(𝑡)

Signal Operations

Type 𝑓 (𝑡)(𝑡 < 0−) 𝐹(𝑠) = ℒ 𝑓 (𝑡) Graph

Impulse 𝛿(𝑡) 1
𝑓 (𝑡)

𝑡

Step 𝑢(𝑡) 1
𝑠 , 𝑠 > 0

𝑓 (𝑡)

𝑡

Exponential 𝑒−𝑎𝑡 1
𝑠+𝑎 , 𝑠 > 𝑎

𝑓 (𝑡)

𝑡

Ramp 𝑡𝑛 𝑛!
𝑠𝑛+1 , 𝑠 > 0

𝑓 (𝑡)

𝑡

Sine sin(𝜔𝑡) 𝜔
𝑠2+𝜔2 , 𝑠 > 0

𝑓 (𝑡)

𝑡

Cosine cos(𝜔𝑡) 𝑠
𝑠2+𝜔2 , 𝑠 > 0

𝑓 (𝑡)

𝑡

Damped Ramp 𝑒−𝑎𝑡 𝑡𝑛 𝑛!
(𝑠−𝑎)𝑛+1 , 𝑠 > 𝑎

𝑓 (𝑡)

𝑡

Damped Sine 𝑒−𝑎𝑡 sin(𝜔𝑡) 𝜔
(𝑠+𝑎)2+𝜔2 , 𝑠 > 𝑎

𝑓 (𝑡)

𝑡

Damped Cosine 𝑒−𝑎𝑡 cos(𝜔𝑡) 𝑠+𝑎
(𝑠+𝑎)2+𝜔2 , 𝑠 > 𝑎

𝑓 (𝑡)

𝑡

Laplace Transforms

Channel Bandwidth (B) is the range of frequencies that can transmit with good
quality. The SNR or Signal to Noise Ratio describes how easy it is to recover a
signal.

SNR =
Signal Power
Noise Power

High SNR means more signal levels and thus more bits per pulse, whereas
higher bandwidth means more pulses per second.

This culminates in Channel Capacity (C) which is the maximum number
of binary bits that can be transmitted in a second.

C = B · log2 (1 + SNR) bit/sec

(For a channel with additive Gaussian white noise.)

Signal Characteristics

𝑗 =
√
−1

Form Equation Conversion

Rectangular 𝑎 + 𝑗𝑏 To polar: 𝑟 =
√
𝑎2 + 𝑏2, ∢𝜃 = tan−1( 𝑏𝑎 )

Polar 𝑟𝑒 𝑗𝜃 = 𝑟∢𝜃 To rectangular: 𝑎 = 𝑟𝑐𝑜𝑠(𝜃), 𝑏 = 𝑟𝑠𝑖𝑛(𝜃)

Operation Property

Addition (𝑎1 + 𝑗𝑏1) + (𝑎2 + 𝑗𝑏2) = (𝑎1 + 𝑎2) + 𝑗(𝑏1 + 𝑏2)
Subtraction (𝑎1 + 𝑗𝑏1) − (𝑎2 + 𝑗𝑏2) = (𝑎1 − 𝑎2) + 𝑗(𝑏1 − 𝑏2)
Multiplication 𝑟1∢𝜃1 · 𝑟2∢𝜃2 = (𝑟1 · 𝑟2)∢(𝜃1 + 𝜃2)
Division 𝑟1∢𝜃1

𝑟2∢𝜃2
=

𝑟1
𝑟2
∢(𝜃1 − 𝜃2)
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6

𝜋
4

𝜋
3

𝜋
2

sin 0 1
2

1√
2

√
3

2 1

cos 1
√
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√

2∢45°

{𝑎 + 𝑗𝑏}∗ = 𝑎 − 𝑗𝑏

1
𝑗 = −𝑗
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𝑟

𝑏

𝑎

𝜃

Euler’s Formula: 𝑒 𝑗𝜃 = cos𝜃 + 𝑗 sin𝜃

Complex Numbers

The Dirac/delta/impulse function is defined by:
∫ ∞
−∞ 𝛿(𝑡)𝑑𝑡 = 1, this states that

there is a vertical line with height infinity whose encompassing area equals one.
The sift property creates a infinite vertical line at the point (𝑡 , 0) whose area is
defined by the function 𝜙(𝑇). This allows the extraction of a point value.∫ ∞

−∞ 𝜙(𝑡)𝛿(𝑡 − 𝑇)𝑑𝑡 = 𝜙(𝑇)

Sifting Property of the Impulse Function

Signals can be considered as vectors in a mathematical space, represented by
their magnitude and phase. These signals can be decomposed into orthogonal
components, such as cos(𝑥) and sin(𝑥), or 𝑒 𝑗𝜃 and 𝑒−𝑗𝜃.

For a trigonometric Fourier series, the vector representation would be:

⟨𝑎0 , 𝑎1 , 𝑏1 , . . . , 𝑎𝑛 , 𝑏𝑛⟩
Where 𝑎0 represents the DC component, 𝑎𝑛 are the coefficients of the cosine
terms, and 𝑏𝑛 are the coefficients of the sine terms.

Conversely, for the exponential Fourier series, the representation would be:

⟨𝐷−𝑛 , · · · , 𝐷−1 , 𝐷0 , 𝐷1 , · · · , 𝐷𝑛⟩
Where 𝐷𝑛 represents the complex Fourier coefficients corresponding to both
positive and negative frequencies, including the DC component 𝐷0.

Signals as Vectors

Magnitude of a vector: ||®𝑎|| =
√
𝑎2

1 + 𝑎2
2 + · · · + 𝑎2

𝑛

Angle between vectors: ®𝑎 · ®𝑏 = ||®𝑎||||®𝑏|| cos𝜃 & ®𝑎 × ®𝑏 = ||®𝑎||||®𝑏|| sin𝜃 𝑛̂

Unit/Normalized Vector: 𝑎̂ = ®𝑎
||𝑎||

Inner/Dot Product (if 0 then vectors are orthogonal): ®𝑎 · ®𝑏 = 𝑎1𝑏1+𝑎2𝑏2+· · ·+𝑎𝑛𝑏𝑛

Cross Product (if 0 then vectors are parallel):

®𝑎 × ®𝑏 =

𝑖 𝑗 𝑘
®𝑎𝑥 ®𝑎𝑦 ®𝑎𝑧
®𝑏𝑥 ®𝑏𝑦 ®𝑏𝑧

= 𝑖
[
®𝑎𝑦 ®𝑏𝑧 − ®𝑎𝑧 ®𝑏𝑦

]
− 𝑗

[
®𝑎𝑥 ®𝑏𝑧 − ®𝑎𝑧 ®𝑏𝑥

]
+ 𝑘

[
®𝑎𝑥 ®𝑏𝑦 − ®𝑎𝑦 ®𝑏𝑥

]
Scaler Projection: comp ®𝑎

®𝑏 = ®𝑎·®𝑏
||®𝑎|| Vector Projection: proj ®𝑎 ®𝑏 = ®𝑎·®𝑏

||®𝑎|| ∗
®𝑎

||®𝑎||

Vector Operations

Energy = 𝐸𝑔 =
∫ ∞
−∞ |𝑔(𝑡)|2𝑑𝑡 Power = 𝑃𝑔 = 1

𝑇

∫
𝑇
|𝑔(𝑡)|2𝑑𝑡

𝑃dBW = 10 · log10 𝑃 𝑃dBm = 30 + 𝑃dBW

Signal Energy & Power



To approximate a signal 𝑔(𝑡) in terms of another 𝑥(𝑡), apply:

𝑔(𝑡) � 𝑐𝑥(𝑡), 𝑡 � [𝑡1 , 𝑡2] , where 𝑐 =
1
𝐸𝑥

∫ 𝑡2

𝑡1

𝑔(𝑡)𝑥(𝑡)𝑑𝑡 = ⟨𝑔, 𝑥⟩
⟨𝑥, 𝑥⟩

=⇒ Error = 𝑒(𝑡) = 𝑔(𝑡) − 𝑐𝑥(𝑡), 𝑡 ∈ [𝑡2 , 𝑡1] & Error Energy = 𝐸𝑒 =

∫ 𝑡2

𝑡1

|𝑒(𝑡)|2𝑑𝑡

Measure of Similarity (𝑐) describes how well a signal can replicate another.

Description Equation

Correlation Relationship
between two signals.

𝜌 = 1√
𝐸𝑔𝐸𝑧

∫ 𝑡2

𝑡1
𝑧(𝑡)𝑔∗(𝑡)𝑑𝑡 = ⟨𝑔,𝑥⟩

||𝑔||·||𝑥||

Cross-Correlation Similarity between
two different signals
over time.

𝜓𝑧𝑔(𝜏) =
∫ ∞
−∞ 𝑧(𝑡)𝑔∗(𝑡 − 𝜏)𝑑𝑡

Auto-Correlation Similarity of a signal
with itself over time.

𝜓𝑔(𝜏) =
∫ ∞
−∞ 𝑔(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡

−1 ≤ 𝜌 ≤ 1
−1 ≤ cos𝜃 ≤ 1 −→ 𝜌 = −1

𝜃 = 𝜋
Opposite, 𝜌 = 0

𝜃 = 𝜋
2

Orthogonal, & 𝜌 = 1
𝜃 = 0 Identical

Signal Approximation & Correlation

Orthogonal signals are signal vectors who are at a right angle or are 𝜋
2 out of phase

of one another. cos(𝑡) & sin(𝑡) are examples of orthogonal and basis functions.∫ 𝑡2

𝑡1

𝑥𝑚(𝑡)𝑥∗𝑛(𝑡)𝑑𝑡 = 𝐸𝑛
= 0 =⇒ Orthogonal
= 1 =⇒ Normalized

Where 𝑥𝑚(𝑡) & 𝑥𝑛(𝑡) are two separate signals. The conjugate transformation
accommodates for complex signals.

To orthogonalize a set of vectors ®𝑣1 , ®𝑣2 , · · · , ®𝑣𝑘 perform the following operation:

®𝑢1 = ®𝑣1 ®𝑢2 = ®𝑣2 − proj ®𝑢1
®𝑣2 ®𝑢3 = ®𝑣3 − proj ®𝑢1

®𝑣3 − proj ®𝑢2
®𝑣3 · · ·

®𝑢𝑘 = 𝑣𝑘 −
∑𝑘−1

𝑗=1 proj𝑢𝑗
𝑣𝑘

The new set of vectors ®𝑢1 , ®𝑢2 , · · · , ®𝑢𝑘 are mutually orthogonal and normalized.
While the magnitude has changed the resulting summation of vectors still results
in the same direction as the summation of the originals.

Gram Schmidt Method

The Trigonometric Fourier Series approximates functions through the summation
of increasingly higher frequency cos & sin terms. 𝑇0 = 2𝜋

𝜔0
= 2𝜋 𝑓

𝑔(𝑡) = 𝑎0 +
∞∑
𝑛=1

𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sin(𝑛𝜔0𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑇0

𝑎0 = 1
𝑇0

∫ 𝑡1+𝑇0

𝑡1
𝑔(𝑡)𝑑𝑡 𝑎𝑛 = 2

𝑇0

∫ 𝑡1+𝑇0

𝑡1
𝑔(𝑡) cos(𝑛𝜔0𝑡)𝑑𝑡

𝑏𝑛 = 2
𝑇0

∫ 𝑡1+𝑇0

𝑡1
𝑔(𝑡) sin(𝑛𝜔0𝑡)𝑑𝑡 where 𝑛 = 1, 2, 3, · · ·

Alternatively a function can be expressed in the Compact Fourier Series form.

𝑔(𝑡) = 𝐶0 +
∞∑
𝑛=1

𝐶𝑛 cos(𝑛𝜔0𝑡 + 𝜃𝑛), 𝑡1 ≤ 𝑡 ≤ 𝑡 + 𝑇0

𝐶0 = 𝑎0 𝐶𝑛 =
√
𝑎2
𝑛 + 𝑏2

𝑛 𝜃𝑛 = tan−1
(
−𝑏𝑛
𝑎𝑛

)
If odd 𝑔(𝑡) = −𝑔(−𝑡) → 𝑎𝑛 = 0 If even 𝑔(𝑡) = 𝑔(−𝑡) → 𝑏𝑛 = 0

𝑛 = 1 𝑛 = 3 𝑛 = 9

Trigonometric Fourier Series

By using Euler’s Formula the Trigonometric Fourier Series can be described in
exponential terms.

𝑒 𝑗𝜃 = cos(𝜃) + 𝑗 sin(𝜃)︸                       ︷︷                       ︸
Euler’s Formula

→ cos(𝜃) = 𝑒 𝑗𝜃+𝑒−𝑗𝜃
2

sin(𝜃) = 𝑒 𝑗𝜃−𝑒−𝑗𝜃
2

=⇒ cos(𝑛𝜔0𝑡)
sin(𝑛𝜔0𝑡) −→

𝑒 𝑗𝑛𝜔0𝑡

𝑒−𝑗𝑛𝜔0𝑡

𝑔(𝑡) =
∞∑

𝑛=−∞
𝐷𝑛𝑒

𝑗𝑛𝜔0𝑡 = 𝐷0 +
∞∑
𝑛=1

𝐷𝑛𝑒
𝑗𝑛𝜔0𝑡 + 𝐷−𝑛𝑒

−𝑗𝑛𝜔0𝑡

𝐷0 = 𝐶0 = 𝑎0 𝐷𝑛 =
1
𝑇0

∫
𝑇0

𝑔(𝑡)𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

𝐷𝑛 = 1
2𝐶𝑛𝑒

𝑗𝜃𝑛

𝐷−𝑛 = 1
2𝐶𝑛𝑒

−𝑗𝜃𝑛
where 𝐷𝑛 = 𝐷∗

−𝑛 , |𝐷𝑛| = |𝐷−𝑛|, & ∠𝐷𝑛 = −∠𝐷−𝑛

Exponential Fourier Series

The energy of a signal in the time domain is equal when expressed in the fre-
quency domain.

𝐸 =

∫ ∞

−∞

��𝑥(𝑡)��2 𝑑𝑡 = 1
2𝜋

∫ ∞

−∞

��𝑋(𝜔)
��2 𝑑𝜔 =

∫ ∞

−∞

��𝑋(2𝜋 𝑓 )
��2 𝑑𝑓

Parseval’s Theorem

The Fourier Spectra allows visualization of the amplitude and phase over the
course of a Fourier Series function in terms of integer multiples (𝑛) or integer
multiples of frequency (𝜔 = 𝑛 · 𝜔0).

Consider 𝐶𝑛 & 𝜃𝑛 or |𝐷𝑛| & ∠𝐷𝑛 versus 𝑛.

Entirely even (𝑎𝑛 ≠ 0 & 𝑏𝑛 = 0) or odd (𝑎𝑛 = 0 & 𝑏𝑛 ≠ 0) functions lack the 𝜃𝑛 &
∠𝐷𝑛 factor. It is only functions who are neither even or odd that require both sin
& cos components, and therefore 𝜃𝑛 & ∠𝐷𝑛 .

Fourier Spectrum

Waveform Amplitude Spectra Coefficients
Square

+𝐴

−𝐴
𝑇0

𝑇𝑝
𝑦 =

sin(𝑥)
𝑥 Decay

𝑎𝑛

𝑛

𝑎0 = 0

𝑎𝑛 =
4𝐴 sin

(
𝑛𝜋

𝑇𝑝

𝑇0

)
𝑛𝜋

𝑏𝑛 = 0

Triangular

+𝐴

−𝐴
𝑇0

𝑦 = 1
𝑥2 Decay

𝑎𝑛

𝑛

𝑎0 = 0

𝑎𝑛 =
8𝐴 sin( 𝑛𝜋

2 )2

𝑛2𝜋2

𝑏𝑛 = 0
Sawtooth

+𝐴

−𝐴
𝑇0

𝑦 = 1
𝑥 Decay

𝑏𝑛

𝑛

𝑎0 = 0

𝑎𝑛 = 0

𝑏𝑛 = 2𝐴
𝑛𝜋

Impulse Train

+𝐴

𝑇0

No Decay

𝑎𝑛

𝑛

𝑎0 = 𝐴
𝑇0

𝑎𝑛 = 2𝐴
𝑇0

𝑏𝑛 = 0

Waveform Examples

Operator Expression Graph

Original 𝑔(𝑡)

Time Shifting 𝑔(𝑡) → 𝑔(𝑡 + 𝛽)
−𝛽

Time Scaling 𝑔(𝑡) → 𝑔(𝛼𝑡) 𝑇 =
𝑇0
𝛼

Time Inversion 𝑔(𝑡) → 𝑔(−𝑡)

Amplitude Inversion 𝑔(𝑡) → −𝑔(𝑡)

Signal Operations

g(t) G(f) Condition

𝑒−𝑎𝑡𝑢(𝑡) 1
𝑎+𝑗2𝜋 𝑓 𝑎 > 0

𝑒 𝑎𝑡𝑢(−𝑡) 1
𝑎−𝑗2𝜋 𝑓 𝑎 > 0

𝑒−𝑎|𝑡| 2𝑎
𝑎2+(2𝜋 𝑓 )2 𝑎 > 0

𝑡𝑒−𝑎𝑡𝑢(𝑡) 1
(𝑎+𝑗2𝜋 𝑓 )2 𝑎 > 0

𝑡𝑛𝑒−𝑎𝑡𝑢(𝑡) 𝑛!
(𝑎+𝑗2𝜋 𝑓 )𝑛+1 𝑎 > 0

𝛿(𝑡) 1 · · ·
1 𝛿( 𝑓 ) · · ·
𝑒 𝑗2𝜋 𝑓0𝑡 𝛿( 𝑓 − 𝑓0) · · ·
𝑢(𝑡) 1

2 𝛿( 𝑓 ) + 1
𝑗2𝜋 𝑓 · · ·

sgn(t) 2
𝑗2𝜋 𝑓 · · ·

cos(2𝜋 𝑓0𝑡)𝑢(𝑡) 1
4
[
𝛿( 𝑓 − 𝑓0) + 𝛿( 𝑓 + 𝑓0)

]
+ 𝑗2𝜋 𝑓

(2𝜋 𝑓0)2−(2𝜋 𝑓 )2 · · ·
sin(2𝜋 𝑓0𝑡)𝑢(𝑡) 1

4𝑗
[
𝛿( 𝑓 − 𝑓0) − 𝛿( 𝑓 + 𝑓0)

]
+ 2𝜋 𝑓0

(2𝜋 𝑓0)2−(2𝜋 𝑓 )2 · · ·
𝑒−𝑎𝑡 sin(2𝜋 𝑓0𝑡)𝑢(𝑡) 2𝜋 𝑓0

(𝑎+𝑗2𝜋 𝑓 )2+4𝜋2 𝑓 2
0

𝑎 > 0

𝑒−𝑎𝑡 cos(2𝜋 𝑓0𝑡)𝑢(𝑡) 𝑎+𝑗2𝜋 𝑓

(𝑎+𝑗2𝜋 𝑓 )2+4𝜋2 𝑓 2
0

𝑎 > 0

Π
(
𝑡
𝜏

)
𝜏sinc(𝜋f𝜏) · · ·

2𝐵sinc(2𝜋Bt) Π

(
𝑓

2𝐵

)
· · ·

Δ
(
𝑡
𝜏

)
𝜏
2 sinc2 (𝜋f𝜏

2
)

· · ·
𝐵sinc2(𝜋Bt) Δ

(
𝑓

2𝐵

)
· · ·∑∞

𝑛=−∞ 𝛿(𝑡 − 𝑛𝑇) 𝑓0
∑∞

𝑛=−∞ 𝛿( 𝑓 − 𝑛 𝑓0) 𝑓0 = 1
𝑇

𝑒
−𝑡2
2𝜎2 𝜎

√
2𝜋𝑒−2(𝜎𝜋 𝑓 )2 · · ·

Table of Fourier Transforms



Property Transform Pair/Property

Superposition 𝑔1(𝑡) + 𝑔2(𝑡) ↔ 𝐺1( 𝑓 ) + 𝐺2( 𝑓 )
Scalar Multiplication 𝑘𝑔(𝑡) ↔ 𝑘𝐺( 𝑓 )
Duality 𝐺(𝑡) ↔ 𝑔(− 𝑓 )
Time scaling 𝑔(𝑎𝑡) ↔ 1

|𝑎|𝐺
(
𝑓

𝑎

)
Time Shifting 𝑔(𝑡 − 𝑡0) ↔ 𝐺( 𝑓 )𝑒−𝑗2𝜋 𝑓 𝑡0

Frequency Shifting 𝑔(𝑡)𝑒 𝑗2𝜋 𝑓0𝑡 ↔ 𝐺( 𝑓 − 𝑓0)
Time Convolution 𝑔1(𝑡) ∗ 𝑔2(𝑡) ↔ 𝐺1( 𝑓 )𝐺2( 𝑓 )
Frequency Convolution 𝑔1(𝑡)𝑔2(𝑡) ↔ 𝐺1( 𝑓 ) ∗ 𝐺2( 𝑓 )
Modulation via Sine 𝑔(𝑡) sin(2𝜋 𝑓0𝑡) ↔ 1

2𝑗
[
𝐺( 𝑓 − 𝑓0) − 𝐺( 𝑓 + 𝑓0)

]
Modulation via Cosine 𝑔(𝑡) cos(2𝜋 𝑓0𝑡) ↔ 1

2
[
𝐺( 𝑓 − 𝑓0) + 𝐺( 𝑓 + 𝑓0)

]
Time Differentiation 𝑑𝑛 𝑔(𝑡)

𝑑𝑡𝑛 ↔ 𝐺( 𝑓 )(𝑗2𝜋 𝑓 )𝑛

Time Integration
∫ 𝑡

−∞ 𝑔(𝑥)𝑑𝑥 ↔ 𝐺( 𝑓 )
𝑗2𝜋 𝑓 + 1

2𝐺(0)𝛿( 𝑓 )

Properties of Fourier Transforms

There are four forms of distortion: linear, nonlinear, multi-path, & fading.

Distortion-less transforms include gain or time delay.
Where |𝐻( 𝑓 )| = 𝑘 & 𝜃ℎ( 𝑓 ) = −2𝜋 𝑓 𝑡𝑑

Group Delay: 𝑡𝑑( 𝑓 ) = − 1
2𝜋

𝑑𝜃ℎ( 𝑓 )
𝑑𝑓

Linear distortions do not have a constant gain nor do they maintain a linear
trend of phase. Where |𝐻( 𝑓 )| ≠ 𝑘 & 𝜃ℎ( 𝑓 ) ≠ −2𝜋 𝑓 𝑡𝑑

Nonlinear distortions– distortions who do not obey typical trends.

Multipath distortions are where a signal arrives at the receiver through multiple
paths of different delays. Both magnitude and phase are periodic with respect
to frequency.

Fading is where the channel characteristics change overtime, this may be fre-
quency dependent.

Signal Distortion

Ideal filters have a phase of 𝜃ℎ( 𝑓 ) = −2𝜋 𝑓 𝑡𝑑, aka a linear phase which results in
a time delay of 𝑡𝑑.

𝐵−𝐵 𝑓

|𝐻( 𝑓 )|

𝐵−𝐵 𝑓

|𝐻( 𝑓 )|

𝑓0− 𝑓0 𝑓

|𝐻( 𝑓 )|

Low-pass High-pass Band-pass

Nth Order Low-pass |𝐻( 𝑓 )| = 1√
1+

(
𝑓

𝐵

)2𝑁
3dB = 1√

2
= 0.707

Ideal Filters

Energy: The essential bandwidth (𝐵) will contain 90%, 95%, or 99% of the total
energy depending on the application.

𝐸𝑔 =

∫ ∞

−∞
|𝐺( 𝑓 )|2𝑑𝑓 =

∫ ∞

−∞
Ψ𝑔( 𝑓 )𝑑𝑓 , where Ψ𝑔( 𝑓 ) := |𝐺( 𝑓 )|2

Power: 𝑆𝑔( 𝑓 ) = lim𝑇→∞
|𝐺𝑇 ( 𝑓 )|2

𝑇 𝑃𝑔 =
∫ ∞
−∞ 𝑆𝑔( 𝑓 )𝑑𝑓

Power & Energy Spectral Density

Message : m(t) Carrier : cos(2𝜋 𝑓𝑐𝑡) Modulated : 𝑠(𝑡) = 𝑘𝑚(𝑡) cos(2𝜋 𝑓𝑐𝑡)

Original Modulated Demodulated

Message being sent Multiply message by carrier,
forms envelope

Multiply again,
remove high frequency

Methods to demodulate:
• Synchronous Detection, where a carrier exactly matching the original is used
to demodulate. Must be used if signal is overmodulated i.e. 𝜇 > 1.
• Envelope Detection, send a carrier along with modulated signal,
[𝐴 + 𝑚(𝑡)] cos(...), an envelope exists if 𝐴 + 𝑚(𝑡) ≥ 0 for all t. Must be 0 ≤ 𝜇 ≤ 1.

𝜑𝐴𝑀 = 𝐴 cos(· · · )︸      ︷︷      ︸
carrier

+𝑚(𝑡) cos(· · · )︸          ︷︷          ︸
sidebands

𝐴 ≥ 𝑚peak(𝑡) Modulation Index 𝜇 =
𝑚𝑝

𝐴

𝑃𝑐 =
𝐴2

2 𝑃𝑠 =
𝑚2(𝑡)

2 Power Efficiency 𝜂 = Useful Power
Total Power =

𝑃𝑠

𝑃𝑐+𝑃𝑠

Band Spectra

Baseband
𝑓− 𝑓𝑐 𝑓𝑐

2𝐴

−𝐵 𝐵

Single Sideband Upper (USB)
𝑓− 𝑓𝑐 𝑓𝑐

𝐴

Single Sideband Lower (LSB)
𝑓− 𝑓𝑐 𝑓𝑐

𝐴

Double Sideband (DSB)
𝑓− 𝑓𝑐 𝑓𝑐

𝐴
2𝐵

All of the above examples are suppressed carrier (-SC).

Quadrature Amplitude Modulation (QAM), is where two AM signals are com-
bined to double the data rate. The upper channel is the in-phase channel, while
the lower channel is the quadrature channel.

𝜑𝑄𝐴𝑀(𝑡) = 𝑚1(𝑡) cos(2𝜋 𝑓𝑐𝑡) + 𝑚2(𝑡) sin(2𝜋 𝑓𝑐𝑡)

Amplitude Modulation

The Hilbert Transform is an ideal
phase shifter, that shifts the phase of
positive spectral components by −𝜋

2 .
𝐻( 𝑓 ) = −𝑗 · sgn( 𝑓 )

|𝐻( 𝑓 )| 1 𝜃ℎ( 𝑓 )
𝜋
2

−𝜋
2

Hilbert Transform

Message : 𝑚(𝑡) Carrier Frequency : 𝑓𝑐

𝑚(𝑡) → 𝐹𝑀 → 𝜑𝐹𝑀(𝑡) = 𝐴 cos
[
2𝜋 𝑓𝑐𝑡 + 2𝜋𝑘 𝑓

∫ 𝑡

−∞
𝑚(𝑡)𝑑𝑡

]
Due to frequency modulation’s constant amplitude it registers 30dB stronger.
As a result FM signals are more resistant to noise. While AM is linear, FM is
non-linear in nature.

Inst. Frequency 𝑓𝑖(𝑡) = 2𝜋 𝑓𝑐 + 2𝜋𝑘 𝑓𝑚(𝑡) Frequency Deviation Δ𝐹 =
𝑘 𝑓 𝑚𝑝

2𝜋
Deviation Ratio 𝛽 = Δ𝐹

𝐵 Carson’s Rule 𝐵𝐹𝑀 = 2𝐵(𝛽 + 1)Hz Power 𝑃𝐹𝑀 = 𝐴2

2

Frequency Modulation

PM and FM signals are interchangeable, replacing 𝑚(𝑡) with
∫
𝑚(𝑡)𝑑𝑡 converts

FM to PM.
𝑚(𝑡) → 𝑃𝑀 → 𝜑𝑃𝑀(𝑡) = 𝐴 cos(2𝜋 𝑓𝑐𝑡 + 2𝜋𝑘𝑝𝑚(𝑡))

Inst. Frequency 𝑓𝑖(𝑡) = 2𝜋 𝑓𝑐 + 2𝜋𝑘𝑝 𝑑𝑚(𝑡)
𝑑𝑡 Frequency Deviation Δ𝐹 =

𝑘𝑝 ¤𝑚𝑝

2𝜋
All other values match FM.

Phase Modulation

Pretend there is a +𝐶 attached to the end of each of the below.∫
𝑥𝑛𝑑𝑥 = 𝑥𝑛+1

𝑛+1•
∫
𝑑𝑥 = 𝑥•

∫
cos(𝑥)𝑑𝑥 = sin(𝑥)•∫

sin(𝑥)𝑑𝑥 = − cos(𝑥)•
∫

sec2(𝑥)𝑑𝑥 = tan(𝑥)•
∫

csc2(𝑥)𝑑𝑥 =

− cot(𝑥)
•∫

sec(𝑥) tan(𝑥)𝑑𝑥 =

sec(𝑥)
•

∫
csc(𝑥) cot(𝑥)𝑑𝑥 =

− csc(𝑥)
•

∫
𝑑𝑥√
1−𝑥2 = sin−1(𝑥)•∫

− 𝑑𝑥√
1−𝑥2 = cos−1(𝑥)•

∫
𝑑𝑥

1+𝑥2 = tan−1(𝑥)•
∫
− 𝑑𝑥

1+𝑥2 = cot−1(𝑥)•∫
𝑑𝑥

|𝑥|
√
𝑥2−1

= sec−1(𝑥)•
∫

𝑑𝑥

−|𝑥|
√
𝑥2−1

= csc−1(𝑥)•
∫
𝑒𝑥𝑑𝑥 = 𝑒𝑥•∫

𝑑𝑥
𝑥 = log |𝑥|•

∫
𝑎𝑥𝑑𝑥 = 𝑎𝑥

log(𝑎)•
∫

cosh(𝑥)𝑑𝑥 =

sinh(𝑥)
•∫

sinh(𝑥)𝑑𝑥 =

cosh(𝑥)
•

∫
tan(𝑥)𝑑𝑥 =

− log | cos(𝑥)|
•

∫
cot(𝑥)𝑑𝑥 =

log |𝑠𝑖𝑛(𝑥)|
•∫

sec(𝑥)𝑑𝑥 =

log | sec(𝑥) + tan(𝑥)|
•

∫
csc(𝑥)𝑑𝑥 =

− log | csc(𝑥) + cot(𝑥)|
•

∫
log(𝑥) = 𝑥 log(𝑥)−𝑥•

Integration by Parts ∫
𝑢 · 𝑑𝑣 = 𝑢 · 𝑣 −

∫
𝑣 · 𝑑𝑢 + 𝐶

Reverse Chain Rule ∫
𝑓 (𝑔(𝑥)) · 𝑔′(𝑥)𝑑𝑥 = 𝐹(𝑔(𝑥)) + 𝐶

Useful Integrals
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